Model Machine Learning SVM (Support Vector Machine) untuk Deteksi Anomali pada Sistem Kelistrikan Perusahaan Kerajinan Kayu GS4
DOI:
https://doi.org/10.55606/jtmei.v4i1.4839Keywords:
Anomaly Detection, Electrical Anomaly, Electrical System, Support Vector MachineAbstract
Anomaly detection in electrical systems is crucial to prevent operational disruptions and equipment damage, especially in small industries such as handicraft companies. This study aims to develop an electrical anomaly detection model using Support Vector Machine (SVM) based on current, voltage, and temperature parameters. Data were collected in real-time using sensors installed at strategic points in the company's electrical network. Anomaly criteria were determined based on normal operating limits: current (8.2–10 A), voltage (198–242 V), and temperature (30–70°C). The SVM model was trained using a dataset classified into normal and anomalous conditions. Model evaluation was conducted using accuracy, precision, recall, and F1-score metrics to assess the anomaly detection performance. Model evaluation was performed using accuracy, precision, recall, and F1-score metrics to assess the accuracy of anomaly detection. The results showed that the SVM model was able to identify anomalies with high accuracy, namely with an Accuracy value of 96.5%. Precision of 94.8% and Recall of 92.3%.
Downloads
References
Ahmed, Q. I. (2023). Development of a hybrid support vector machine with grey wolf optimization algorithm for detection of the solar power plants anomalies. MDPI Journal, 11(5), 237. https://doi.org/10.3390/systems11050237
AL-Madani, B., Shawahna, A., & Qureshi, M. (2019). Anomaly detection for industrial control networks using machine learning with the help from the inter-arrival curves. arXiv preprint arXiv:1911.05692. Retrieved from https://arxiv.org/abs/1911.05692
Ananta, F., Syauqy, D., & Prasetio, B. H. (2023). Perancangan sistem deteksi anomali pada panel surya menggunakan mikrokontroler dengan algoritma K-nearest neighbors. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 7(5), 2305-2312.
Febrianti, A. (2018). Penerapan metode K-means clustering dan support vector machine untuk klasifikasi citra (Undergraduate thesis). UIN Jakarta. Retrieved from https://repository.uinjkt.ac.id/dspace/bitstream/123456789/55624/1/AMANDA%20FEBRIANTI-FST.pdf
Lazarević, D., Živković, M., Kocić, D., & Ćirić, J. (2022). The utilizing Hall effect-based current sensor ACS712 for true RMS current measurement in power electronic systems. Scientific Technical Review, 72(1), 27-32.
Noor, A. S. M., Ali, M. S. A. M., & Ali, M. A. M. (2023). Experimental analysis and monitoring of photovoltaic panel parameters using ACS712 current sensor. International Journal of Advanced Computer Science and Applications, 14(2), 150-156.
Prabuningrat, G. S. W., Hostiadi, D. P., & Srinadi, N. L. P. (2024). Klasifikasi deteksi anomali menggunakan metode machine learning. Seminar Nasional Sains dan Teknologi Komputer (SPINTER). Retrieved from https://spinter.stikom-bali.ac.id/index.php/spinter/article/download/245/210/322
Raja, S., & Fokoué, E. (2019). Multi-stage fault warning for large electric grids using anomaly detection and machine learning. arXiv preprint arXiv:1903.06700. Retrieved from https://arxiv.org/abs/1903.06700
Umari, Z., & Supardi, J. (2024). Deteksi anomali sinyal vibrasi pada mesin industri menggunakan autoencoder di PT. Pusri Palembang. Jurnal Penelitian Teknologi Informasi (JPTI), 7(1), 45-52. Retrieved from https://jpti.journals.id/index.php/jpti/article/download/553/300
Wainer, J., & Fonseca, P. (2020). How to tune the RBF SVM hyperparameters?: An empirical evaluation of 18 search algorithms. arXiv preprint arXiv:2008.11655.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Teknik Mesin, Industri, Elektro dan Informatika

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.