Klasifikasi Waktu Pada Dokumen Persetujuan Accounting Voucher
DOI:
https://doi.org/10.55606/jtmei.v3i1.3215Keywords:
Naive Bayes, time classification, timely and late classificationAbstract
This research aims to optimize the approval document management process by implementing time classification techniques using Naive Bayes. Naive Bayes classification is a data classification technique that utilizes probability theory and statistics to predict future probabilities based on Accounting Voucher approval document data from January to April 2023. This study focuses on the application of the Naive Bayes algorithm for time classification, aiming to provide innovative solutions for PT. Kideco Jaya Agung in the mining industry. Attributes used in the Naive Bayes classification method include document type, document number, document status, and time difference. The research results indicate that the probabilities of the 'On Time' and 'Late' classes are approximately 0.9737 and 0.0263, respectively, with an accuracy rate of 97.67441860465115% or 98%.
Downloads
References
A. Serlina, A. H. (2023). SENTIMEN ANALISIS KEPUASAN PELANGGAN TERHADAP APLIKASI BELANJA ONLINE. Samarinda: Universitas Muhammadiyah Kalimantan Timur.
Anggakara, M. (2023, Mei 17). Pengertian Approval dan Prosesnya dalam Dunia kerja. Diambil kembali dari LinovHR: https://www.linovhr.com/pengertian-approval/
Annur, H. (2018). KLASIFIKASI MASYARAKAT MISKIN MENGGUNAKAN METODE NAÏVE BAYES. ILKOM Jurnal Ilmiah Volume 10 Nomor 2, 161.
Irkham Widhi Saputro, B. W. (2019). Uji Performa Algoritma Naïve Bayesuntuk Prediksi Masa Studi Mahasiswa. Citec Journal, Vol. 6, No. 1, 4.
Roni Andarsyah, I. R. (2021). APLIKASI APPROVAL MANAGEMENT SYSTEM DOCUMENT PURCHASING . Jurnal Teknik Informatika, Vol. 13, No. 2, 32-33.
Senastri, K. (2022, Agustus 19). Voucher Adalah: Pengertiannya dalam Akuntansi dan Industri. Diambil kembali dari accurate: https://accurate.id/akuntansi/voucher-adalah/#:~:text=Dikutip%20dari%20laman%20belajarekonomi.com%2C%20di%20dalam%20dunia%20akuntansi%2C,juga%20biaya%20yang%20sudah%20keluar%20di%20dalam%20bisnis.
Tias Mugi Rahayu, B. A. (2021). KLASIFIKASI KETEPATAN WAKTU KELULUSAN MAHASISWA DENGAN . http://ejurnal.binawakya.or.id/index.php/MBI, 4994-5000.
Prasetyowati, E., Nilam Ramadhani, dan, Raya Panglegur Km, J., & Timur, J. (2018). SISTEM EVALUASI DAN KLASIFIKASI KINERJA AKADEMIK MAHASISWA UNIVERSITAS MADURA MENGGUNAKAN NAIVE BAYES DENGAN DIRICHLET SMOOTHING. Dalam JUTI: Jurnal Ilmiah Teknologi Informasi (Vol. 16, Nomor 2).
Syahril Dwi Prasetyo, Shofa Shofiah Hilabi, & Fitri Nurapriani. (2023). Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN. Jurnal KomtekInfo, 1–7. https://doi.org/10.35134/komtekinfo.v10i1.330
Laiya, J. W., Manueke, S., Manado, P. N., Raya, J., Manado, P., Bisnis, J. A., & Manado, N. (2022). PENTINGNYA AKURASI DATA DALAM MEMPERTAHANKAN KINERJA PERUSAHAAN PADA PT. MASSINDO SOLARIS NUSANTARA (Vol. 4).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Teknik Mesin, Industri, Elektro dan Informatika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.