Analisis Sentimen Pengguna Youtube Mengenai Analog Switch Off Menggunakan Word Embedding Dan Metode Long Short-Term
DOI:
https://doi.org/10.55606/jtmei.v2i3.2273Keywords:
Long Short-Term Memory, Sentiment Analysis, Word Embedding,Abstract
Analog Switch Off (ASO) or migration program from analog television to digital television is a program issued by the Ministry of Communication and Informatics in Indonesia. Some people provide different responses and opinions on YouTube comments about ASO. There are those who give positive or neutral comments. However, there were also those who gave negative comments. Sentiment analysis is a process that is carried out automatically in studying, retrieving, and processing textual data to obtain information and see responses or opinions about an issue or object towards positive, neutral or negative opinions. Thus sentiment analysis can be used as a reference in making organizational decisions, improving a service, or as a review of a product. Sentiment analysis was performed using word embedding with Word2Vec, and sentiment classification using the Long Short-Term Memory (LSTM) method. The results of the evaluation test are 92% accuracy, 92% precision, 92% recall, and 92% f1-score.
Downloads
References
Annur CM. (2022) Survei KIC: Mayoritas Masyarakat Indonesia Mengakses Informasi di Media Sosial. Diakses pada 15 Januari 2023, dari https://databoks.katadata.co.id/datapublish/2022/01/20/survei-kic-mayoritas-masyarakat-indonesia-mengakses-informasi-di-media-sosial
Balya. (2019). Analisis Sentimen Pengguna Youtube di Indonesia pada Review Smartphone Menggunakan Naïve Bayes. Medan: USU.
Brownlee, J. (2017). Deep Learning for Natural Language Processing. Diakses pada 23 Januari 2023, https://github.com/abhiramkadali/Machine_Learning-_Resources.
Hassan, A., & Mahmood, A. (2017). Deep learning for sentence classification. Farmingdale. USA.
Hochreiter, S. & Chmidhuber, J. U. (1997). Long Short-Term Memory, Neural Computation. Neural Computation, 9(8), 1735-1780.
Maisarah, M. A. (2020). Sistem Analisis Sentimen pada Fanpage Facebook Kandidat Presiden 2019-2024.
Rahutomo, F., Saputra, P. Y., & Fidyawan M. A. (2018) Implementasi Twitter Sentiment Analysis Untuk Review Film Menggunakan Algoritma Support Vector Machine. Jurnal Inform Polinema, 4(2), 93–100.
Ramadhan, M. H. (2021), Analog Switch Off Dalam Perspektif Regulator (Studi Kasus Peranan Komisi Penyiaran Indonesia Pusat Dalam Pemberlakuan Analog Switch Off Pasca Penetapan Undang-Undang Nomor 11 Tahun 2020). Bandung: Universitas Komputer Indonesia.
Seo, S., Kim, C., Kim, H., Mo, K., & Kang, P. (2020). Comparative Study of Deep Learning-Based Sentiment Classification. IEEE Access, 8, 6861–6875.
Su, Z., Xu, H., Zhang, D., & Xu, Y. (2014). Chinese sentiment classification using a neural network tool — Word2vec. International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), Beijing, China, pp. 1–6.
Wang, J. H., & Liu, T. W. (2018). An LSTM Approach to Short Text Sentiment Classification with Word Embeddings. The 2018 Conference on Computational Linguistics and Speech Processing, pp. 214-223.
Wisnubroto, K. (2023). Agar Keinginan Nonton Siaran TV Digital tak Tersandung Harga STB. Diakses pada 20 Januari 2023, dari https://www.indonesia.go.id/kategori/editorial/6808/agar-keinginan-nonton-siaran-tv-digital-tak-tersandung-harga-stb?lang=1.