Analisis Perbandingan Sensor Inersia dan Infrared Untuk Akurasi Perbandingan Jarak dan Putaran Roda untuk Kendaraan Pribadi

Authors

  • Beatrice Anggitha Manurung Universitas Panca Budi Medan

DOI:

https://doi.org/10.55606/jtmei.v1i4.1247

Keywords:

Integral Euler, Kendaraan Otonom, Sensor inersia, Sensor Inframerah.

Abstract

Penggunaan kendaraan otonom dengan sistem kendali jarak jauh sangat banyak sekali penggunaanya di era revolusi industri, salah satunya adalah teknologi pembacaan jarak perpindahan kendaraan dan kecepatan gerak kendaraan. Pembacaan jarak perpindahan pada kendaraan otonom dapat dilakukan dengan metode integral euler dan metode putaran roda, metode reinman dan lain sebagainya. Penelitian ini bertujuan menentukan pembacaan jarak dan perbandingannya pada kendaraan otonom menggunakan metode integral euler dan metode putaran roda. Penelitian ini berfokus pada perbandingan jarak perpindahan kendaraan otonom antara metode integral euler dengan metode putaran roda. Metode integral euler digunakan pada perhitungan jarak perpindahan menggunakan sensor inersia dengan menurunkan data percepatan. Metode putaran roda digunakan pada perhitungan jarak perpindahan menggunakan infrared sensor dengan menghitung jumlah pulse data yang terdeteksi dikalikan dengan variabel penambahan jarak setiap celah roda. Hasil dari penelitian menunjukkan bahwa penggunaan metode integral euler pada pembacaan jarak perpindahan lebih baik dibandingkan metode putaran roda pada percoroda kendaraan bergerak maju, mundur, ke kiri dan ke kanan dengan perbandingan eror 4.13625% berbanding 6.845%.

Downloads

Download data is not yet available.

References

T. Gamer, M. Hoernicke, B. Kloepper, R. Bauer, and A. J. Isaksson, “The Autonomous Industrial Plant -Future of Process Engineering, Operations and Maintenance,” IFAC- PapersOnLine, vol. 52, no. 1, pp. 454–460, Jan. 2019, doi: 10.1016/J.IFACOL.2019.06.104.

N. Correll, “Introduction to Autonomous Control,” University of Colorado Boulder, pp. 1–226, 2016, Accessed: Nov. 01, 2021. [Online]. Available: https://open.umn.edu/opentextbooks/textbooks/introduction-to-autonomous-robots

Y. Liu, J. Zhao, J. Apple, T. Frank, M. Saylor, and T. Siegel, “An Autonomous Omnidirectional Robot,” Journal of Robotics, vol. 2010, pp. 1–9, 2010, doi: 10.1155/2010/857594.

E. Kayacan, E. Kayacan, H. Ramon, and W. Saeys, “Velocity Control of a Spherical Rolling Robot Using a Grey-PID Type Fuzzy Controller With an Adaptive Step Size,”

IFAC Proceedings Volumes, vol. 45, no. 22, pp. 863–868, Jan. 2012, doi: 10.3182/20120905-3-HR-2030.00123.

L. Kamelia, E. A. D. Hamidi, W. Darmalaksana, and A. Nugraha, “Real-Time Online Attendance System Based on Fingerprint and GPS in the Smartphone,” Proceeding of 2018 4th International Conference on Wireless and Telematics, ICWT 2018, Nov. 2018, doi: 10.1109/ICWT.2018.8527837.

B. Anoohya B and R. Padhi, “Trajectory Tracking of Autonomous Mobile Robots Using Nonlinear Dynamic Inversion,” IFAC-PapersOnLine, vol. 51, no. 1, pp. 202– 207, Jan. 2018, doi: 10.1016/J.IFACOL.2018.05.041.

G. Péter, B. Kiss, and V. Tihanyi, “Vision and odometry based autonomous vehicle lane changing,” ICT Express, vol. 5, no. 4, pp. 219–226, Dec. 2019, doi: 10.1016/J.ICTE.2019.09.005.

Y. Zein, M. Darwiche, and O. Mokhiamar, “GPS tracking system for autonomous vehicles,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 3127–3137, Dec. 2018, doi: 10.1016/J.AEJ.2017.12.002.

H. A. Hashim, M. Abouheaf, and M. A. Abido, “Geometric stochastic filter with guaranteed performance for autonomous navigation based on IMU and feature sensor fusion,” Control Engineering Practice, vol. 116, p. 104926, Nov. 2021, doi: 10.1016/J.CONENGPRAC.2021.104926.

E. I. al Khatib, M. A. Jaradat, M. Abdel-Hafez, and M. Roigari, “Multiple sensor fusion for mobile robot localization and navigation using the Extended Kalman Filter,” ISMA 2015 - 10th International Symposium on Mechatronics and its Applications, Jan. 2016, doi: 10.1109/ISMA.2015.7373480.

Md. Nurujjaman, “Enhanced Euler’s Method to Solve First Order Ordinary Differential Equations with Better Accuracy,” Mar. 2020, doi: 10.5281/ZENODO.3731020.

H. author Anton, “Calculus : early transcedentals,” 2013, Accessed: Nov. 12, 2021. [Online]. Available: http://lib.ui.ac.id

by Daniel James Loughnane, “DESIGN AND CONSTRUCTION OF AN AUTONOMOUS MOBILE SECURITY DEVICE”.

A. Paul, Design of an autonomous navigation system for a mobile robot. Library and Archives Canada = Bibliothèque et Archives Canada, 2007.

M. O. Tatar, C. Popovici, D. Mandru, I. Ardelean, and A. Plesa, “Design and development of an autonomous omni-directional mobile robot with Mecanum wheels,” Proceedings of 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, AQTR 2014, 2014, doi: 10.1109/AQTR.2014.6857869.

“Teensy® 4.0.” https://www.pjrc.com/store/teensy40.html (accessed Nov. 12, 2021).

“MPU-6000 and MPU-6050 Product Specification Revision 3.4.” https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6000-Datasheet1.pdf (accessed Nov. 01, 2021).

“E18-D80NK Sensor/Switch Datasheet pdf - Proximity Sensor/Switch. Equivalent, Catalog.” https://datasheetspdf.com/pdf/1311840/tinkbox/E18-D80NK/1 (accessed Nov. 01, 2021).

“MPU-6000 and MPU-6050 Register Map and Descriptions Revision 4.2 MPU- 6000/MPU-6050 Register Map and Descriptions,” 2013, Accessed: Nov. 01, 2021. [Online]. Available: https://invensense.tdk.com/wp-content/uploads/2015/02/MPU- 6000-Register-Map1.pdf

Downloads

Published

2023-02-17

How to Cite

Beatrice Anggitha Manurung. (2023). Analisis Perbandingan Sensor Inersia dan Infrared Untuk Akurasi Perbandingan Jarak dan Putaran Roda untuk Kendaraan Pribadi. Jurnal Teknik Mesin, Industri, Elektro Dan Informatika, 1(4), 139–149. https://doi.org/10.55606/jtmei.v1i4.1247