Analisis Perbandingan HPLC dan Teknik Lain untuk Deteksi Antibiotik

Authors

  • Putri Eka Diah Lestari Universitas Negeri Semarang
  • Aulia Khajar Raudhatul Jannah Universitas Negeri Semarang
  • Hasna’ Khoirotun Hisan Universitas Negeri Semarang
  • Maoliani Nurul Fitri Universitas Negeri Semarang
  • Nessa Aulia Azharani Universitas Negeri Semarang

DOI:

https://doi.org/10.55606/termometer.v2i2.3143

Keywords:

Antibiotics, Analytes, HPLC, UHPLC, Parameters

Abstract

Antibiotics are a therapy used in bacterial infections. The β-lactam group, such as penicillin, amoxicillin and cephalosporin are first generation antibiotics that can be used in treating bacterial infections. Antibiotics can be analyzed using High Performance Liquid Chromatography (HPLC). Ultra high performance liquid chromatography (UHPLC) and high pressure liquid chromatography (HPLC) are important analytical techniques in molecular separation. UHPLC is specifically designed for higher pressures during chromatographic analysis with short columns and small particle sizes, while HPLC aims to separate molecules in minimum time. Nonetheless, method transfer and revalidation between UHPLC and HPLC is quite easy and can save time. The use of these liquid chromatography techniques allows for more efficient and time-saving analysis. In performing routine HPLC analysis, it is important to consider speed, sensitivity, resolution, cost of analysis, and column maintenance. Therefore, modern developments in liquid chromatography are applied to save time and solvent consumption. Since 2004, UHPLC has repeatedly demonstrated significant advantages over HPLC-based methods. Parameters used in method data validation include precision, accuracy, coefficient of variation, limit of detection (LOD), and limit of quantity (LOQ).

References

S. Kim, “Optimal diagnosis and treatment of group a streptococcal pharyngitis,” Infect. Chemother., vol. 47, no. 3, pp. 202–204, 2015, doi: 10.3947/ic.2015.47.3.202.

L. S. P. Moore, J. Cunningham, and H. Donaldson, “A clinical approach to managing pseudomonas aeruginosa infections,” Br. J. Hosp. Med., vol. 77, no. 4, pp. C50–C54, 2016, doi: 10.12968/hmed.2016.77.4.C50.

D. Anggita, S. Nuraisyah, and E. P. Wiriansya, “Mekanisme Kerja Antibiotik,” UMI Med. J., vol. 7, no. 1, pp. 46–58, 2022.

J. Peris-Vicente et al., “Liquid chromatography, a valuable tool in the determination of antibiotics in biological, food and environmental samples,” Microchem. J., vol. 177, 2022, doi: 10.1016/j.microc.2022.107309.

N. H. Savitri, D. N. Indiastuti, and M. R. Wahyunitasari, “Inhibitory Activity of Allium Sativum L. Extract Against Streptococcus Pyogenes and Pseudomonas Aeruginosa,” J. Vocat. Heal. Stud., vol. 3, no. 2, p. 72, 2019, doi: 10.20473/jvhs.v3.i2.2019.72-77.

A. Nuraini, R. Yulia, and Setiasih, “Hubungan Pengetahuan dan Keyakinan dengan Kepatuhan Menggunakan Antibiotik Pasien Dewasa,” J. Manag. Pharm. Pract., vol. 8, no. 4, pp. 165–174, 2018.

N. Angraini and P. Desmaniar, “Optimasi penggunaan High Performance Liquid Chromatography (HPLC) untuk analisis asam askorbat guna menunjang kegiatan Praktikum Bioteknologi Kelautan,” J. Penelit. Sains, vol. 22, no. 2, p. 69, 2020, doi: 10.56064/jps.v22i2.583.

T. H. Zainal, E. Wahyudin, and Y. Rifai, “PENETAPAN KURVA STANDAR SENYAWA TETRA HIDROXY ETHYL DISULPHATE (THES) DALAM PLASMA MARMUT (Cavia porcellus) MENGGUNAKAN KCKT,” Maj. Farm. dan Farmakol., vol. 22, no. 3, pp. 90–92, 2019, doi: 10.20956/mff.v22i3.5828.

N. Nyoman, P. Sari, M. Revolta, and J. Runtuwene, “Validasi Metode Analisis Kromatografi Cair Kinerja Tinggi Untuk Penetapan Kadar Amoxicilin Dalam Plasma Secara in Vitro,” Pharmacon, vol. 4, no. 3, pp. 96–103, 2015.

M. Carlier, V. Stove, J. J. De Waele, and A. G. Verstraete, “Ultrafast quantification of β-lactam antibiotics in human plasma using UPLC-MS/MS,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 978–979, pp. 89–94, 2015, doi: 10.1016/j.jchromb.2014.11.034.

S. L. Parker, J. Lipman, J. A. Roberts, and S. C. Wallis, “A simple LC-MS/MS method using HILIC chromatography for the determination of fosfomycin in plasma and urine: Application to a pilot pharmacokinetic study in humans,” J. Pharm. Biomed. Anal., vol. 105, pp. 39–45, 2015, doi: 10.1016/j.jpba.2014.11.042.

S. K. Amponsah, J. A. Boadu, D. K. Dwamena, and K. F. M. Opuni, “Bioanalysis of aminoglycosides using high-performance liquid chromatography,” ADMET DMPK, vol. 10, no. 1, pp. 27–62, 2022, doi: 10.5599/admet.1183.

E. Topp, J. Renaud, M. Sumarah, and L. Sabourin, “Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field,” Sci. Total Environ., vol. 562, pp. 136–144, 2016, doi: 10.1016/j.scitotenv.2016.03.210.

Y. Zhao et al., “Modification of garlic peel by nitric acid and its application as a novel adsorbent for solid-phase extraction of quinolone antibiotics,” Chem. Eng. J., vol. 326, pp. 745–755, 2017, doi: 10.1016/j.cej.2017.05.139.

J. Zhang et al., “Determination of quinolones in wastewater by porous β-cyclodextrin polymer based solid-phase extraction coupled with HPLC,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1068–1069, pp. 24–32, 2017, doi: 10.1016/j.jchromb.2017.09.046.

C. Nebot et al., “Monitoring the presence of residues of tetracyclines in baby food samples by HPLC-MS/MS,” Food Control, vol. 46, pp. 495–501, 2014, doi: 10.1016/j.foodcont.2014.05.042.

N. Pinder, T. Brenner, S. Swoboda, M. A. Weigand, and T. Hoppe-Tichy, “Therapeutic drug monitoring of beta-lactam antibiotics – Influence of sample stability on the analysis of piperacillin, meropenem, ceftazidime and flucloxacillin by HPLC-UV,” J. Pharm. Biomed. Anal., vol. 143, pp. 86–93, 2017, doi: 10.1016/j.jpba.2017.05.037.

J. Rossmann, S. Schubert, R. Gurke, R. Oertel, and W. Kirch, “Simultaneous determination of most prescribed antibiotics in multiple urban wastewater by SPE-LC-MS/MS,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 969, pp. 162–170, 2014, doi: 10.1016/j.jchromb.2014.08.008.

L. M. Chiesa, M. Nobile, S. Panseri, and F. Arioli, “Antibiotic use in heavy pigs: Comparison between urine and muscle samples from food chain animals analysed by HPLC-MS/MS,” Food Chem., vol. 235, pp. 111–118, 2017, doi: 10.1016/j.foodchem.2017.04.184.

N. Al-Afy, H. Sereshti, A. Hijazi, and H. Rashidi Nodeh, “Determination of three tetracyclines in bovine milk using magnetic solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1092, pp. 480–488, 2018, doi: 10.1016/j.jchromb.2018.06.049.

M. Cámara, A. Gallego-Picó, R. M. Garcinuño, P. Fernández-Hernando, J. S. Durand-Alegría, and P. J. Sánchez, “An HPLC-DAD method for the simultaneous determination of nine β-lactam antibiotics in ewe milk,” Food Chem., vol. 141, no. 2, pp. 829–834, 2013, doi: 10.1016/j.foodchem.2013.02.131.

M. Paal, M. Zoller, C. Schuster, M. Vogeser, and G. Schütze, “Simultaneous quantification of cefepime, meropenem, ciprofloxacin, moxifloxacin, linezolid and piperacillin in human serum using an isotope-dilution HPLC–MS/MS method,” J. Pharm. Biomed. Anal., vol. 152, pp. 102–110, 2018, doi: 10.1016/j.jpba.2018.01.031.

K. Y. Kim, S. H. Cho, Y. H. Song, M. S. Nam, and C. W. Kim, “Direct injection LC-MS/MS method for the determination of teicoplanin in human plasma,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1008, pp. 125–131, 2016, doi: 10.1016/j.jchromb.2015.11.037.

X. Song et al., “Simultaneous determination of eight cyclopolypeptide antibiotics in feed by high performance liquid chromatography coupled with evaporation light scattering detection,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1076, pp. 103–109, 2018, doi: 10.1016/j.jchromb.2018.01.020.

I. Baranowska, P. Markowski, and J. Baranowski, “Simultaneous determination of 11 drugs belonging to four different groups in human urine samples by reversed-phase high-performance liquid chromatography method,” Anal. Chim. Acta, vol. 570, no. 1, pp. 46–58, 2006, doi: 10.1016/j.aca.2006.04.002.

É. Alechaga, E. Moyano, and M. T. Galceran, “Mixed-mode liquid chromatography coupled to tandem mass spectrometry for the analysis of aminoglycosides in meat,” Anal. Bioanal. Chem., vol. 406, no. 20, pp. 4941–4953, 2014, doi: 10.1007/s00216-014-7912-7.

F. Deng et al., “Ultra-high performance liquid chromatography tandem mass spectrometry for the determination of five glycopeptide antibiotics in food and biological samples using solid-phase extraction,” J. Chromatogr. A, vol. 1538, pp. 54–59, 2018, doi: 10.1016/j.chroma.2018.01.036.

U. Woiwode, A. Sievers-Engler, and M. Lämmerhofer, “Preparation of fluorescent labeled gentamicin as biological tracer and its characterization by liquid chromatography and high resolution mass spectrometry,” J. Pharm. Biomed. Anal., vol. 121, pp. 307–315, 2016, doi: 10.1016/j.jpba.2015.12.053.

S. C. Anderson et al., “Qualitative and quantitative drug residue analyses: Chlortetracycline in white-tailed deer (Odocoileus virginianus) and supermarket meat by liquid chromatography tandem-mass spectrometry,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1092, pp. 237–243, 2018, doi: 10.1016/j.jchromb.2018.05.027.

B. Behnoush, A. Sheikhazadi, E. Bazmi, A. Fattahi, E. Sheikhazadi, and S. H. Saberi Anary, “Comparison of UHPLC and HPLC in benzodiazepines analysis of postmortem samples,” Med. (United States), vol. 94, no. 14, 2015, doi: 10.1097/MD.0000000000000640.

S. Annissa, I. Musfiroh, and L. Indriati, “Perbandingan Metode Analisis Instrumen HPLC dan UHPLC : Article Review,” Farmaka, vol. 17, no. 3, pp. 189–197, 2019.

Downloads

Published

2023-12-21

How to Cite

Putri Eka Diah Lestari, Aulia Khajar Raudhatul Jannah, Hasna’ Khoirotun Hisan, Maoliani Nurul Fitri, & Nessa Aulia Azharani. (2023). Analisis Perbandingan HPLC dan Teknik Lain untuk Deteksi Antibiotik. Termometer: Jurnal Ilmiah Ilmu Kesehatan Dan Kedokteran, 2(2), 01–11. https://doi.org/10.55606/termometer.v2i2.3143