Simulasi Pengaruh Penambahan Aluminium dan Magnesium terhadap Anoda Korban Seng untuk Aplikasi Air Laut

Authors

  • Zaid Sulaiman Universitas Nusa Putra

DOI:

https://doi.org/10.55606/juprit.v1i1.565

Keywords:

Laju Korosi, Potensial Anoda, Zn-Al-Mg, Regresi Polinomial Multivariate

Abstract

Komposisi optimal penambahan aluminium dan magnesium dipilih berdasarkan parameter potensial anoda dan lau korosi. persamaan pemodelan yang telah dipilih adalah pemodelan dengan metode regresi polynomial orde 2 multivariate .  Model yang sesuai ditentukan dengan membandingkan koefisien determinasi, standar estimasi eror, dan signifikansi nilai P. Penambahan aluminium dan magnesium menyebabkan potensial anode semakin lebih negatif, sedangkan penambahan magnesium dan aluminium meningkatkan dan menurunkan laju korosi. Anoda yang paling optimal telah ditentukan ketika penambahan aluminium 3% dan magnesium 0,1% yang mana menghasilkan laju korosi 38,88 mpy dan potensial anoda -1,098 V.

References

Alexopoulos, E. (2010). Introduction to Multivariate Regression Analysis. HIPPOKRATIA, 14(1), 23–28.

American Bureau of Shipping. (2017). Guidance Notes on Cathodic Protection of SHIPS.

DNVGL. (2017). RECOMMENDED PRACTICE CATHODIC PROTECTION DESIGN. June.

Dubent, S., Mertens, M. L. A. D., & Saurat, M. (2010). Electrodeposition, characterization and corrosion behaviour of tin-20 wt.% zinc coatings electroplated from a non-cyanide alkaline bath. Materials Chemistry and Physics, 120(2–3), 371–380. https://doi.org/10.1016/j.matchemphys.2009.11.017

Filho, D. B. F., Silva, J. A., & Rocha, E. (2011). What is R2 all about? Leviathan – Cadernos de Pesquisa Política, 3, 60–68. https://doi.org/10.11606/issn.2237-4485.lev.2011.132282

Goodwin, F. E. (2010). Corrosion of Zinc and its Alloys (B. Cottis, M. Graham, R. Lindsay, S. Lyon, T. Richardson, D. Scantlebury, & H. B. T.-S. C. Stott (eds.); pp. 2078–2093). Elsevier. https://doi.org/https://doi.org/10.1016/B978-044452787-5.00100-1

Kaewmaneekul, T., & Lothongkum, G. (2013). Effect of aluminium on the passivation of zinc-aluminium alloys in artificial seawater at 80°C. Corrosion Science, 66, 67–77.

Krieg, R., Vimalanandan, A., & Rohwerder, M. (2014). Corrosion of Zinc and Zn-Mg Alloys with Varying Microstructures and Magnesium Contents. Journal of The Electrochemical Society, 161(3), C156–C161.

Lee, H.-S., Singh, J. K., Ismail, M. A., Bhattacharya, C., Seikh, A. H., Alharthi, N., & Hussain, R. R. (2019). Corrosion mechanism and kinetics of Al-Zn coating deposited by arc thermal spraying process in saline solution at prolong exposure periods. Scientific Reports, 9(1), 3399. https://doi.org/10.1038/s41598-019-39943-3

Liu, Y., Li, H., & Li, Z. (2013). EIS investigation and structural characterization of different hot-dipped zinc-based coatings in 3.5% NaCl solution. International Journal of Electrochemical Science, 8(6), 7753–7767.

Low, H. T., Hamzah, E., Farahany, S., Bakhsheshi-Rad, H. R., & Cho, M. H. (2015). Effect of cooling rate on the corrosion behaviour of Zn-Al and Zn-Al-Mg alloy. Materials Science Forum, 819, 71–75. https://doi.org/10.4028/www.scientific.net/MSF.819.71

Morimoto, Y., Honda, K., Nishimura, K., Tanaka, S., Takahashi, A., Shindo, H., & Kurosaki, M. (2003). Excellent corrosion-resistant Zn-Al-Mg-Si alloy hot-dip galvanized steel sheet “SUPER DYMA.” Nippon Steel Technical Report, 2371(87), 24–26.

Muazu, A., & Yaro, S. A. (2011). Effects of Zinc Addition on the Performance of Aluminium as Sacrificial Anode in Seawater. Journal of Minerals and Materials Characterization and Engineering, 10(02), 185–198.

Park, I.-C., & Kim, S.-J. (2020). Determination of Corrosion Protection Current Density Requirement of Zinc Sacrificial Anode for Corrosion Protection of AA5083-H321 in Seawater. Applied Surface Science, 509(January), 145346. https://doi.org/10.1016/j.apsusc.2020.145346

Pedeferri, P. (2018). Corrosion Science and Engineering (L. Lazzaro & M. P. Pedeferri (eds.)). Springer International Publishing.

Prosek, T., Hagström, J., Persson, D., Fuertes, N., Lindberg, F., Chocholatý, O., Taxén, C., Šerák, J., & Thierry, D. (2016). Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability. Corrosion Science, 110, 71–81.

Raghavan, V. (2007). Al-Mg-Zn (Aluminum-Magnesium-Zinc). Journal of Phase Equilibria and Diffusion, 28(2), 203–208. https://doi.org/10.1007/s11669-007-9029-6

Rosalbino, F., Angelini, E., Macciò, D., Saccone, A., & Delfino, S. (2009). Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn-5% Al (Galfan) alloy in neutral aerated sodium chloride solution. Electrochimica Acta, 54, 1204–1209.

Sinha, P. (2013). Multivariate Polynomial Regression in Data Mining: Methodology, Problems and Solutions. International Journal of Scientific & Engineering Research, 4(12), 962–965.

Standard Practice for Laboratory Immersion Corrosion Testing of Metals. (2004). Astm G31-72 (Reapproved 2004).

Vida, T. A., Freitas, E. S., Cheung, N., Garcia, A., & Osório, W. R. (2017). Electrochemical corrosion behavior of as-cast Zn-rich Zn-Mg alloys in a 0.06M NaCl solution. International Journal of Electrochemical Science, 12(6), 5264–5283.

Vu, T. N. (2013). Selective dissolution from Zn-Al alloy coatings on steel. Université Pierre et Marie Curie.

Wint, N., Cooze, N., H. Sullivan, J., William, G., & N. McMurray, H. (2019). The Effect of Microstructural Refinement on the localized Corrosion of model Zn-Al-Mg alloy coatings on steel. Journal of The Electrochemical Society, 166(11), C3147–C3158. https://doi.org/10.1016/j.ab.2018.02.027.This

Yuan, C., Liang, C., & An, X. (2010). Electrochemical performance of high purity zinc and Zn-Al-Cd alloy as reference electrodes. Wuhan University Journal of Natural Sciences, 15(1), 64–70.

Downloads

Published

2022-02-27

How to Cite

Zaid Sulaiman. (2022). Simulasi Pengaruh Penambahan Aluminium dan Magnesium terhadap Anoda Korban Seng untuk Aplikasi Air Laut. Jurnal Penelitian Rumpun Ilmu Teknik, 1(1), 01–09. https://doi.org/10.55606/juprit.v1i1.565