Pengenalan Wajah dengan Viola Jones
DOI:
https://doi.org/10.55606/juprit.v3i4.4363Keywords:
Viola-Jones, FCNN, Face, Face DetectionAbstract
The Viola-Jones algorithm in OpenCV is efficient for detecting faces. The study is the accuracy of face detection using Viola-Jones on FCNN. The data is divided into training, testing, and validation sets. The FCNN model achieves high accuracy but suffers from overfitting. Techniques such as regularization and dropout can improve performance. The training duration is relatively short. FCNN machine learning model. The first layer is a hidden layer with 128 neurons and uses the ReLU (Rectified Linear Unit) activation function. The second layer is the output layer with ten drilled neurons showing excellent performance, with a training accuracy of 99.49% and a validation accuracy of 97.68%. This shows that the model successfully learned patterns from training data and applied them effectively to validation data.
Downloads
References
Adochiei, I. R., Tirbu, O. I., Adochiei, N. I., Pericle-Gabriel, M., Larco, C. M., Mustata, S. M., & Costin, D. (2020). Drivers’ drowsiness detection and warning systems for critical infrastructures. 2020 8th E-Health and Bioengineering Conference, EHB 2020, 14–17. https://doi.org/10.1109/EHB50910.2020.9280165
Ahmad, A. H., Saon, S., Mahamad, A. K., Darujati, C., Mudjanarko, S. W., Susiki Nugroho, S. M., & Hariadi, M. (2021). Real time face recognition of video surveillance system using haar cascade classifier. Indonesian Journal of Electrical Engineering and Computer Science, 21(3), 1389–1399. https://doi.org/10.11591/ijeecs.v21.i3.pp1389-1399
Alkababji, A. M., & Abd, S. R. (2021). Half-face based recognition using principal component analysis. Indonesian Journal of Electrical Engineering and Computer Science, 22(3), 1404–1410. https://doi.org/10.11591/ijeecs.v22.i3.pp1404-1410
Alkinani, M. H., Khan, W. Z., & Arshad, Q. (2020). Detecting Human Driver Inattentive and Aggressive Driving Behavior Using Deep Learning: Recent Advances, Requirements and Open Challenges. IEEE Access, 8, 105008–105030. https://doi.org/10.1109/ACCESS.2020.2999829
Bozzano, M., Cimatti, A., Fernandes Pires, A., Jones, D., Kimberly, G., Petri, T., Robinson, R., & Tonetta, S. (2015). Formal design and safety analysis of AIR6110 wheel brake system. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9206, 518–535. https://doi.org/10.1007/978-3-319-21690-4_36
Chakraborty, M., & Aoyon, A. N. H. (2014). Implementation of Computer Vision to detect driver fatigue or drowsiness to reduce the chances of vehicle accident. 1st International Conference on Electrical Engineering and Information and Communication Technology, ICEEICT 2014. https://doi.org/10.1109/ICEEICT.2014.6919054
Dey, S., Chowdhury, S. A., Sultana, S., Hossain, M. A., Dey, M., & Das, S. K. (2019). Real Time Driver Fatigue Detection Based on Facial Behaviour along with Machine Learning Approaches. 2019 IEEE International Conference on Signal Processing, Information, Communication and Systems, SPICSCON 2019, 135–140. https://doi.org/10.1109/SPICSCON48833.2019.9065120
Dixit, A., & Kasbe, T. (2022). Multi-feature based automatic facial expression recognition using deep convolutional neural network. Indonesian Journal of Electrical Engineering and Computer Science, 25(3), 1406–1419. https://doi.org/10.11591/ijeecs.v25.i3.pp1406-1419
E. Widjaja, A., Hery, H., & Habsara Hareva, D. (2021). The Office Room Security System Using Face Recognition Based on Viola-Jones Algorithm and RBFN. INTENSIF: Jurnal Ilmiah Penelitian Dan Penerapan Teknologi Sistem Informasi, 5(1), 1–12. https://doi.org/10.29407/intensif.v5i1.14435
Hussain, B. I., & Rafi, M. (2023). A Secured Biometric Authentication with Hybrid Face Detection and Recognition Model. International Journal of Intelligent Engineering and Systems, 16(3), 48–61. https://doi.org/10.22266/ijies2023.0630.04
Imanuddin, I., Alhadi, F., Oktafian, R., & Ihsan, A. (2019). Deteksi Mata Mengantuk pada Pengemudi Mobil Menggunakan Metode Viola Jones. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 18(2), 321–329. https://doi.org/10.30812/matrik.v18i2.389
Junaedi, S., & Akbar, H. (2018). Driver Drowsiness Detection Based on Face Feature and PERCLOS. Journal of Physics: Conference Series, 1090(1). https://doi.org/10.1088/1742-6596/1090/1/012037
Karilingappa, K., Jayadevappa, D., & Ganganna, S. (2023). Human emotion detection and classification using modified Viola-Jones and convolution neural network. IAES International Journal of Artificial Intelligence, 12(1), 79–86. https://doi.org/10.11591/ijai.v12.i1.pp79-86
Labib, R. P. M. D., Hadi, S., & Widayaka, P. D. (2021). Low Cost System for Face Mask Detection Based Haar Cascade Classifier Method. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 21–30. https://doi.org/10.30812/matrik.v21i1.1187
Murthy, K. S. R., Siddineni, B., Kompella, V. K., Aashritha, K., Sri Sai, B. H., & Manikandan, V. M. (2022). An Efficient Drowsiness Detection Scheme using Video Analysis. International Journal of Computing and Digital Systems, 11(1), 573–581. https://doi.org/10.12785/ijcds/110146
Oyebode, K., & Ukaoha, K. C. (2022). A fast and non-trainable facial recognition system for schools. Indonesian Journal of Electrical Engineering and Computer Science, 25(2), 989–994. https://doi.org/10.11591/ijeecs.v25.i2.pp989-994
Reddy Chirra, V. R., Uyyala, S. R., & Kishore Kolli, V. K. (2019). Deep CNN: A machine learning approach for driver drowsiness detection based on eye state. Revue d’Intelligence Artificielle, 33(6), 461–466. https://doi.org/10.18280/ria.330609
Said, S., AlKork, S., Beyrouthy, T., Hassan, M., Abdellatif, O. E., & Fayek Abdraboo, M. (2018). Real time eye tracking and detection- A driving assistance system. Advances in Science, Technology and Engineering Systems, 3(6), 446–454. https://doi.org/10.25046/aj030653
Sunardi, S., Yudhana, A., & Wijaya, S. A. (2022). Penerapan Metode Median Filtering untuk Optimasi Deteksi Wajah pada Foto Digital. Journal of Innovation Information Technology and Application (JINITA), 4(1), 51–60. https://doi.org/10.35970/jinita.v4i1.1214
Valsan A, V., Mathai, P. P., & Babu, I. (2021). Monitoring driver’s drowsiness status at night based on computer vision. Proceedings - IEEE 2021 International Conference on Computing, Communication, and Intelligent Systems, ICCCIS 2021, 989–993. https://doi.org/10.1109/ICCCIS51004.2021.9397180
Wang, F., Chen, X., Wang, D., & Yang, B. (2017). An improved image-based iris-tracking for driver fatigue detection system. Chinese Control Conference, CCC, 11521–11526. https://doi.org/10.23919/ChiCC.2017.8029198
Zuraiyah, T. A., Maryana, S., & Kohar, A. (2022). Automatic Door Access Model Based on Face Recognition using Convolutional Neural Network. 22(1), 241–252. https://doi.org/10.30812/matrik.v22i1.2350
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jurnal Penelitian Rumpun Ilmu Teknik

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.