Perbandingan Kinerja Model RNN, LSTM, dan BLSTM dalam Memprediksi Jumlah Gempa Bulanan di Indonesia
DOI:
https://doi.org/10.55606/juprit.v3i1.3466Keywords:
BLSTM, Earthquake Prediction, LSTM, RNN, Time Series DataAbstract
Earthquakes are natural phenomena that frequently occur in Indonesia. To identify and predict the level of earthquake activity, effective prediction methods are needed. In this study, we employed a Recurrent Neural Network (RNN) to predict the average number of earthquakes that occur each month in Indonesia. This research utilized a large amount of historical earthquake data in Indonesia. We divided this data into training and testing sets to train and evaluate our prediction model. Additionally, we used Mean Absolute Error (MAE) and Mean Squared Error (MSE) as evaluation metrics to measure the accuracy of our model's predictions. The results showed that using Long Short-Term Memory (LSTM) units with a Bidirectional (BLSTM) configuration, which is a part of RNN, provided accurate predictions regarding the average number of earthquakes per month in Indonesia. We achieved an MAE of 0.0668 and RMSE of 0.0858, indicating a good level of accuracy in predicting the average number of earthquakes. This research contributes significantly to the understanding and prediction of earthquake activity in Indonesia. The use of deep learning techniques in RNN can provide accurate and reliable prediction outcomes for earthquake mitigation and risk reduction efforts in Indonesia.
Downloads
References
Agwil, W., Novianti, P., & Hidayati, N. (2020, November). Penerapan Jaringan Saraf Tiruan Pada Data Gempa Bumi di Provinsi Bengkulu. Statistika, 8(2), 152-158. doi:https://doi.org/10.26714/jsunimus.8.2.2020.152-158
Alawiyah, S. N. (2021, Oktober 5). Pemodelan Menggunakan Pendekatan Recurrent Neural Network Long Short-Term Memory (RNN-LSTM) Pada Harga Emas Dunia. Retrieved Januari 5, 2024, from http://repository.unimus.ac.id/id/eprint/4855
Amanda, Y. R., ’Aini, M. N., Miyoze, M., & Wahyu Nugroho, D. O. (2022, July). Prediksi Gempa Bumi di Indonesia Menggunakan R-Shiny. JURNAL SAINS DAN SENI ITS, 11(3), 315-321.
Ariani, D., Nasution, Y. N., & Yuniarti, D. (2017, Desember 21). Perbandingan Metode Bootstrap Dan Jackknife Resampling Dalam Menentukan Nilai Estimasi Dan Interval Konfidensi Parameter Regresi. EKSPONENSIAL, 8(1), 43-50.
Endalie, D., Haile, G., & Taye, W. (2022, Agustus 18). Bi-directional long short term memory-gated recurrent unit model for Amharic next word prediction. PLoS ONE, 17(8), 1-10. doi:https://doi.org/10.1371/journal.pone.0273156
Gao, M., Shi, G., & Li, S. (2018, November 27). Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory Recurrent Neural Network. Sensors, 18(12). doi:https://doi.org/10.3390/s18124211
Hamidah, K., & Voutama, A. (2023, Juni 18). Analisis Faktor Tingkat Kebahagiaan Negara Menggunakan Data World Happiness Report dengan Metode Regresi Linier. Explore IT, 15(1), 1-7. doi:https://doi.org/10.35891/explorit.v11i2.1793
Lattifia, T., Buana, P. W., & Rusjayanthi, N. D. (2022, April 1). Model Prediksi Cuaca Menggunakan Metode LSTM. JITTER, 3(1).
Mulyawan, R. (2024, Februari 5). Vanishing Gradient Problem. Retrieved Februari 5, 2024, from RifqiMulyawan.com: https://rifqimulyawan.com/kamus/vanishing-gradient-problem/
Nielson, A. (2020). Practical Time Series Analysis: Prediction with Statistics & Machine Learning. Sebastopol. Sebastopol, United States of America: O’Reilly Media, Inc.
Nilsen, A. (2022, Juni 30). Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45. 6(1), 137-147.
Somantri, O. (2021, November). Prediksi Kekuatan Gempa Bumi Indonesia Berdasarkan Nilai Magnitudo Menggunakan Neural Network. SANTIKA, 2, 203-207.
Somantri, O., Purwaningrum, S., & Riyanto. (2022, Maret 1). MODEL SUPPORT VECTOR MACHINE (SVM) BERDASARKAN PARAMETER WINDOWS UNTUK PREDIKSI KEKUATAN GEMPA BUMI. JTT, 8(1), 17-24.
Trivusi. (2022, September 17). Mengenal Jaringan Saraf Tiruan (JST): Arsitektur dan Jenis-jenisnya. Retrieved Februari 5, 2024, from Trivusi: https://www.trivusi.web.id/2022/07/mengenal-jaringan-saraf-tiruan-jst.html
Zhu, J., Yang, Z., Mourshed, M., Guo, Y., Zhou, Y., Chang, Y., . . . Feng, S. (2019, July 13). Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches. Energies, 12(14). doi:https://doi.org/10.3390/en12142692
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Jurnal Penelitian Rumpun Ilmu Teknik

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.