Proses Produksi Feronikel dari Bijih Nikel Laterit dengan Metode Rotary Kiln – Electric Furnace (RKEF)

Authors

  • Sudaryanto Sudaryanto Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Untung Sukamto Universitas Pembangunan Nasional “Veteran” Yogyakarta
  • Ibnu Cahyo Nugroho Universitas Pembangunan Nasional “Veteran” Yogyakarta

DOI:

https://doi.org/10.55606/juprit.v2i4.3456

Keywords:

Nickel, Laterite, Saprolite, Ferronickel, Pyrometallurgy

Abstract

Indonesia is one of the leading producers of nickel. The process of producing nickel from laterite ore is mainly used to make ferronickel, nickel matte, or nickel metal. Laterite nickel ore with a Ni content greater than 1.8% can be processed through pyrometallurgical methods. The production of ferronickel using the Rotary Kiln-Electric Furnace method involves a series of steps, including the transportation of raw materials, drying of samples, moisture content testing, sample testing, smelting, pouring, and metal testing. The object of this study is laterite nickel from the Bahodopi and Pomalaa sites of PT Vale Indonesia Tbk. The object has been divided into four samples, namely Bahodopi Low Limit, Bahodopi Upper Limit, Pomalaa Low Limit, and Pomalaa Upper Limit, with varying levels of nickel content. The aim of this research is to produce ferronickel with a high nickel grade. The grade and recovery of nickel from the smelting of Bahodopi Low Limit, Bahodopi Upper Limit, Pomalaa Low Limit, and Pomalaa Upper Limit samples are as follows grade Ni 7.98%; 12.75%; 8.94%; 10.85% and recovery Ni 37.46%; 90.52%; 50.43%; 86.85%. The low grade and recovery in the Bahodopi Low Limit sample can be attributed to the initial nickel melted being much lower than the other samples and the appearance of eustantite, clinoesntantite ((Fe,Ni,Mg)2Si2O6), and forsterite (Mg1.7NiO.3O4Si) phases in the slag which can trap nickel and iron so that they remain in the slag.

References

Forster, J., Pickles, C. A., & Elliott, R. (2016). Microwave carbothermic reduction roasting of a low grade nickeliferous silicate laterite ore. Minerals Engineering, 88, 18–27. https://doi.org/10.1016/j.mineng.2015.09.005

Habashi, F. (1997) Handbook of Extractive Metallurgy Edited by Fatbi Habashi Volume I : The Metal Industry.

Setiawan, I. (2016) ‘Pengolahann Nikel Laterit secara Pirometalurgi: Kini dan Penelitian Kedepan’, Prosiding Semnastek (Seminar Nasional Sains dan Teknologi), 1(November), pp. 1–7.

Sheng, Y.Y., Irons, G.A. and Tisdale, D.G. (1998) ‘Transport phenomena in electric smelting of nickel matte: Part I. Electric potential distribution’, Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 29(1), pp. 77–83. Available at: https://doi.org/10.1007/s11663-998-0009-y.

Subagja, R., Prasetyo, A. B., & Sari, W. M. (2016). Peningkatan Kadar Nikel Dalam Laterit Jenis Limonit Dengan Cara Peletasi, Pemanggangan Reduksi Dan Pemisahan Magnet Campuran Bijih, Batu Bara, Dan Na2SO4 [Upgrading of Nickel Content in The Limonitic Laterite Ores by Pelletizing, Reduction Roasting and Ma. Metalurgi, 31(2), 103. https://doi.org/10.14203/metalurgi.v31i2.156

Downloads

Published

2024-02-02

How to Cite

Sudaryanto Sudaryanto, Untung Sukamto, & Ibnu Cahyo Nugroho. (2024). Proses Produksi Feronikel dari Bijih Nikel Laterit dengan Metode Rotary Kiln – Electric Furnace (RKEF). Jurnal Penelitian Rumpun Ilmu Teknik, 2(4), 187–197. https://doi.org/10.55606/juprit.v2i4.3456