Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree


  • Ihsan Zulfahmi Universitas Negeri Medan



sentiment analysis, decision tree, pln mobile application


This study utilizes Twitter data to understand user opinions and emotions towards an application. The Decision Tree method was chosen due to its ability to describe the relationship between input variables and the target. The TF-IDF method was used to weight words in the text, and the confusion matrix was used to evaluate the accuracy of the classification model. The research included the research process flow, data preprocessing, and data modeling. Word cloud visualization was used to display the frequency of words in the text. Data was collected from Twitter using Python and the Tweepy library. After preprocessing, the data was categorized into positive, negative, and neutral labels. The evaluation results using the decision tree algorithm showed an accuracy of 96%. The word cloud revealed that the word "aplikasi" (application) has the highest frequency, which shows the importance of the PLN Mobile application but also shows the need for further development. This study provides insights into user sentiment towards the PLN Mobile application and demonstrates the effectiveness of the Decision Tree method in sentiment analysis


Iqbal and H. Sarker, “Machine Learning: Algorithms, Real-World Applications and Research Directions,” SN Comput Sci, vol. 2, no. 3, pp. 1–21, May 2021, doi: 10.1007/s42979-021-00592-x.

M. Wankhade, A. C. S. Rao, and C. Kulkarni, “A survey on sentiment analysis methods, applications, and challenges,” Artif Intell Rev, vol. 55, no. 7, pp. 5731–5780, Oct. 2022, doi: 10.1007/s10462-022-10144-1.

A. Yadav, C. K. Jha, A. Sharan, and V. Vaish, “Sentiment analysis of financial news using unsupervised approach,” Procedia Comput Sci, vol. 167, pp. 589–598, 2020, doi: 10.1016/j.procs.2020.03.325.

A. Shathik and K. Prasad, “A Literature Review on Application of Sentiment Analysis Using Machine Learning Techniques,” International Journal of Applied Engineering and Management Letters (IJAEML) A Refereed International Journal of Srinivas University, vol. 4, no. 2, pp. 2581–7000, 2020, doi: 10.5281/zenodo.3977576.

J. Homepage, N. C. Agustina, D. Herlina Citra, W. Purnama, C. Nisa, and A. Rozi Kurnia, “The Implementation of Naïve Bayes Algorithm for Sentiment Analysis of Shopee Reviews on Google Play Store,” MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 2, pp. 47–54, 2022.

J. Administrasi Publik, V. Salsa Bella, D. Widodo, and J. Semolowaru No, “Implementasi Aplikasi Identitas Kependudukan Digital (IKD) Dalam Menunjang Pelayanan Publik Masyarakat Di Kecamatan Tambaksari,” Jurnal SARAQ OPAT, vol. 6, pp. 14–31, 2024, doi: 10.55542/saraqopat.v6i1.833.

S. S. Sundari, C. Rahmat Hidayat, and I. Difari, “Implementasi Naïve Bayes Untuk Analisis Sentimen Twiter Terhadap Pergerakan Harga Saham,” InfoSys Journal, vol. 8, pp. 98–110, 2022.

T. Z. Maulani, Z. K. Simbolon, and Amirullah, “Implementasi Algoritma Naïve Bayes Classifier Dalam Menentukan Topik Tugas Akhir Mahasiswa Berbasis Web,” Jurnal Infomedia : Teknik Informatika, Multimedia, dan Jaringan, vol. 4, pp. 33–41, 2019.

Z. A. Diekson, M. R. B. Prakoso, M. S. Q. Putra, M. S. A. F. Syaputra, S. Achmad, and R. Sutoyo, “Sentiment analysis for customer review: Case study of Traveloka,” Procedia Comput Sci, vol. 216, pp. 682–690, 2022, doi: 10.1016/j.procs.2022.12.184.

A. Mukti, A. D. Hadiyanti, A. Nurlaela, and J. Panjaitan, “Sistem Analisa Sentiment Bakal Calon Presiden 2024 Menggunakan Metode NLP Berbasis Web,” SOSCIED, vol. 6, no. 1, p. p-ISSN, 2023.




How to Cite

Ihsan Zulfahmi. (2023). Analisis Sentimen Aplikasi PLN Mobile Menggunakan Metode Decission Tree. Jurnal Penelitian Rumpun Ilmu Teknik, 3(1), 11–21.